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Abstract

The Stream Control Transmission Protocol (SCTP) was de-
veloped to be a viable solution for transportation of signal-
ing traffic within IP-based networks. Signaling traffic is dif-
ferent from ordinary bulk traffic in many ways. One exam-
ple of this is that the requirements of timely delivery usually
are much stricter. However, the loss recovery mechanisms in
SCTP are not fully optimized to these requirements. For in-
stance, if packet loss occurs when the amount of outstand-
ing data is small, a SCTP sender might be forced to rely
on lengthy timeouts for loss recovery. This paper presents a
number of proposals that try to solve this particular problem,
with focus on the Early Retransmit mechanism. We propose
a modification to Early Retransmit, to adapt it to signaling
scenarios, and evaluate its performance experimentally. The
results show that the modified Early Retransmit mechanism
is able to provide significant reductions in loss recovery time.
In some cases, the time needed to recover from packet loss
was reduced with as much as 67%.

1. INTRODUCTION

The Transmission Control Protocol (TCP) [13] has tradi-
tionally been the most common protocol for transportation
of data within packet switched networks. However, while a
majority of network applications used today employ TCP, a
growing number of applications have found the protocol to be
too limiting for their specific needs. For example: TCP trans-
mits byte streams, which means that applications must add
their own record markings if they wish to encapsulate user
messages; and applications using TCP can only receive data
in the order it was sent, which can cause unnecessary delays
if packets are lost or reordered.

One group of applications that benefits from having such
limitations removed are applications that transfer signaling
traffic. To better support this traffic, the Stream Control Trans-
mission Protocol (SCTP) [19] was standardized by the Inter-
net Engineering Task Force (IETF).

SCTP was originally developed to be a protocol for trans-
portation of telephony (Signaling System No. 7 (SS7)) signal-
ing messages. However, as the standardization of SCTP was
completed and actual implementations started to emerge, it
soon became subject to other types of signaling traffic as well.
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One example can be found in [15], where it is proposed that
Session Initiation Protocol (SIP) [16] traffic is transported
with SCTP. Despite the diversity in applications employing
SCTP to transmit signaling data, some properties are common
for traffic generated by signaling applications. For example,
the amount of data transmitted is less than in ordinary TCP
bulk transfers, flows are often bursty, and the requirements of
timely delivery are usually much stricter.

Although SCTP is a protocol of its own, the specification
is heavily influenced by TCP. For example, the loss recovery
and congestion control are almost identical to those of TCP.
There are several reasons for this, but one of the most impor-
tant is that SCTP was designed to be TCP friendly. However,
by inheriting the loss recovery and congestion control of TCP,
SCTP also inherited some of the problems associated with
these mechanisms. One problem for short, or bursty, flows
can be found in the loss recovery mechanisms. SCTP uses
two different mechanisms for loss recovery: retransmission
timeout and fast retransmit. Retransmission timeout is a slow
loss recovery mechanism, which is only used as a last resort.
Fast retransmit, on the other hand, provides much quicker loss
detection and is therefore the preferred recovery mechanism.
The problem, however, is that fast retransmit does not work
well, or at all, when the amount of outstanding data is small.
Thus, if the amount of outstanding data is small, and packet
loss occurs, a sender might be forced to rely on the slow loss
recovery that retransmission timeout provides. This is trou-
blesome for signaling traffic, as it typically consists of small
amounts of data and have strict requirements on timely deliv-
ery.

Several proposals, for example Limited Transmit [2] and
TCP Smart-Framing [11], try to solve the problem of slow
loss recovery when the amount of outstanding data is small.
However, in a signaling context both Limited Transmit and
TCP Smart-Framing are inadequate, as further discussed in
the next section, since they are only able to achieve limited
improvement under certain circumstances.

Instead, we consider the work in progress proposal Early
Retransmit [1]. We propose a slight modification to Early Re-
transmit, to better support signaling traffic, and present an ex-
perimental evaluation of its performance. To the best of our
knowledge, this is the first evaluation of the proposal. The
evaluation was conducted using the lksctp [5] implementa-
tion of SCTP. The experiments were executed in an emulated
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network environment, using bursty traffic and network char-
acteristics representative for signaling networks.

The results from the evaluation show that Early Retransmit
can reduce the time needed for loss recovery significantly,
when considering bursty traffic. For some packet losses the
time needed to detect and recover from loss was reduced with
as much as 67%.

The rest of this paper is structured as follows. In the next
section we provide a detailed description of fast retransmit
and its limitations in a signaling context. This section also
describes Early Retransmit and the related proposals. The
following section describes the experimental environment,
and how the experiments were conducted. The next section
presents the results we achieved, and the final section pro-
vides the conclusions of this paper.

2. PACKET LOSS RECOVERY IN SCTP

In this section, we describe the fast retransmit mechanism
of SCTP. We also describe the two proposals Limited Trans-
mit and TCP Smart-Framing, and explain why these are inad-
equate for improving the loss recovery of SCTP. Furthermore,
this section also details the Early Retransmit proposal, and the
non-bulk adaptation that we propose.

2.1. Fast Retransmit & Related Proposals

As previously mentioned, SCTP has two different mecha-
nisms for loss recovery: retransmission timeout and fast re-
transmit. Fast retransmit is the preferred one, as it allows for
the fastest loss detection. Fast retransmit is triggered by the
reception of duplicate acknowledgments. Duplicate acknowl-
edgments are sent by a receiver when it receives packets that
are out-of-order. The reason for a packet to arrive out-of-order
is either that packets have been reordered in the network, or
that a packet has been lost, causing the following packets to
be out-of-order. To disambiguate packet loss from reordering,
SCTP requires that three duplicate acknowledgments are re-
ceived before fast retransmit is invoked [18].

For example, if five packets, Sy,...,Ss, are sent and S, is
lost within the network, the receiver will generate duplicate
acknowledgments for S3, S4, and S5, causing the sender to fast
retransmit S». While a threshold of three duplicate acknowl-
edgments helps in preventing unnecessary retransmissions of
reordered packets, it can also result in a performance prob-
lem. Consider the previous example of five packets. If packet
S1 or S, is lost, it will be possible to invoke fast retransmit
as there are at least three packets following these. However,
if one of the last packets is lost, the sender must rely on a
costly retransmission timeout for loss recovery. In general, if
the amount of outstanding packets are less than four, and no
more data are ready for transmission, then it will not be possi-
ble to invoke fast retransmit at all. While this restriction is no
serious limitation for applications that transmit large amounts
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of data, and thus keep a large number of packets in flight, it
is a problem for signaling applications, as they transmit little,
or small bursts, of data.

For example, consider a SCTP flow consisting of small
bursts with signaling messages. Let us also assume that these
bursts are separated in time by idle periods. If one of the mes-
sages is lost within the network it might be impossible to re-
cover it with fast retransmit, especially if the gaps between
different bursts are long, and the number of messages in a
burst is small. The same problem of course also appears for
short signaling flows. As signaling traffic has strict require-
ments on timely delivery, it is important that the SCTP loss
recovery is enhanced to provide faster loss recovery in such
situations.

As previously mentioned, both Limited Transmit (LT) [2]
and TCP Smart-Framing (TCP-SF) [11] tries to enhance the
loss recovery, when the amount of outstanding data is small.
Even if these proposals target TCP, they are compatible with
SCTP as well'.

To enable timely loss recovery, LT allows a sender to send
one previously unsent packet upon the reception of each of
the first two duplicate acknowledgments. The intention of this
strategy is to generate additional duplicate acknowledgments
at the receiver when the sender is limited by its congestion
window. However, there exists a number of situations where
LT is not able to provide any improvements. For example,
consider a sender that only has two packets to transmit. If one
of these packets is lost, LT will be of no help. The reason for
this is that no previously unsent packets, which can trigger
duplicate acknowledgments, exist at the sender. In addition,
LT will add at least one extra round-trip time to the loss re-
covery time, as it can not send any packets before receiving a
duplicate acknowledgment.

The second proposal, TCP-SF, tries to enable fast retrans-
mit by ensuring that at least four packets are outstanding all
the time. To achieve this, TCP-SF is activated during the slow
start phase and fragments packets that is about to be sent. For
example, if a sender has no outstanding data and is about to
transmit two packets, TCP-SF fragments these packets into
four separate ones. In this way TCP-SF enables fast retrans-
mit for the first outstanding packet. The benefit of this strat-
egy is however limited, as it is only possible to recover the
first of the four packets with fast retransmit. In addition to
this limitation, TCP-SF is inappropriate for other reasons. For
instance, it is incompatible with the message abstraction that
SCTP uses, as it could unneccesarily split messages into sep-
arate packets. Regular SCTP implementations may split mes-
sages into separate packets, but only if a message is too large
to fit in a single packet. Such large messages are, however,
unlikely when considering signaling traffic.

'In fact, SCTP already uses an algorithm similar to Limited Transmit.
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2.2. Early Retransmit

In [1], Allman et al introduce the Early Retransmit algo-
rithm for both TCP and SCTP. To enhance the standard loss
recovery of these transport protocols, when the amount of
outstanding data is small, a dynamic lowering of the dupli-
cate acknowledgment threshold is proposed. Based on the
number of packets that are currently in flight, the threshold
is reduced to support fast retransmission of the first outstand-
ing data packet. For example, if three packets are in flight, the
threshold is reduced to be able to trigger fast retransmit after
receiving two duplicate acknowledgments. In general, if the
amount of outstanding data (ownd) is less than four full-sized
packets worth of data (4 *SMSS), and either no unsent data
is ready for transmission or the receiver-advertised window
does not permit any more packets to be transmitted, then fast
retransmit is permitted when ownd-SMSS bytes have been
acknowledged. Therefore, Early Retransmit will permit fast
retransmit of a single lost packet, as long as there are at least
one packet left that can generate a duplicate acknowledgment.

Compared to the previously discussed proposals, LT and
TCP-SF, this approach allows fast retransmit to be invoked
in nearly all situations. The only situations in which Early
Retransmit is of no help, is when multiple packets are lost, or
if a single packet is sent and lost.

A possible problem with Early Retransmit, discussed in
[1], is that a reduction of the duplicate acknowledgment
threshold could make SCTP less robust to network reorder-
ing. As mentioned in the previous subsection, two different
events can cause duplicate acknowledgment generation at a
receiver: packet loss or network reordering. If reordering oc-
curs, and the degree of reordering exceeds the value of the
duplicate acknowledgment threshold, SCTP will spuriously
retransmit packets. Several researchers (e.g. [9][8]) have con-
cluded that the prevalence of network reordering could be
high in some Internet paths, and that this could be harm-
ful to transport protocol performance. However, a number of
suggestions exist that could reduce the impact of network re-
ordering. For example, Allman et al [1] suggest that DSACKs
[4] are used to detect spurious retransmissions, and limit the
use of Early Retransmit upon such detection. Network re-
ordering may, however, not be an issue in most signaling sce-
narios, as networks used for this kind of traffic often are man-
aged and therefore less prone to reorder packets.

Considering signaling traffic, a more serious problem with
Early Retransmit, as specified by Allman et al [1], is that it is
not appropriately adapted to non-bulk transfers. This is a sig-
nificant limitation, as signaling traffic typically is non-bulk.
In the next subsection we explain why such an adaptation is
necessary, and also propose one.
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RTOinit (mS) 200
RTOpin (mMS) 100
RTOpax (MS) 400
SACKdelay (ms) 40

Burst size (messages) 4 7
Inter-burst gap (ms) 200 100
Bottleneck bandwidth (Kbit/s) 500, 1000, 2000
One way end-to-end delay (ms) || 5, 10, 15, 20, 25

Table 1. Experimental Parameters

2.3. Modified Early Retransmit

As previously mentioned, Early Retransmit is intended for
both TCP and SCTP, and the actual algorithm is exactly the
same for both protocols. We also stated that this was inappro-
priate, as it does not work well for non-bulk traffic. For in-
stance, consider an application sending five SCTP signaling
messages with a payload of 200 bytes each. Further, let us
assume that the application does not send them at once, but
rather with a small amount of time in between. What will hap-
pen is that these messages are not bundled into larger packets,
but rather sent in five different packets. If the Early Retrans-
mit algorithm is used as specified in the previous subsection,
fast retransmit can never be triggered. Since the amount of
outstanding data (ownd) will be less than one SMSS, assum-
ing an SMSS larger than 1000 bytes, ownd-SMSS can not be
acknowledged.

To better support such scenarios, we propose a modifica-
tion to the SCTP version of Early Retransmit. This modifica-
tion changes the requirements of Early Retransmit to work on
a number of packets basis, instead of a number of bytes basis.
With this modification, the requirements of Early Retransmit
becomes: if the amount of outstanding packets (opkt) is less
than four, and either no unsent data is ready for transmission
or the receiver-advertised window does not permit any more
packets to be transmitted, then fast retransmit is permitted
when opkt -1 packets have been acknowledged.

In our implementation of Early Retransmit, evaluated in
the rest of the paper, this modification is used.

3. EXPERIMENTAL SETUP

To evaluate Early Retransmit in a signaling context, we
modified the standard parameterization of SCTP to conform
with the high requirements that signaling traffic usually has
[12]. These values can be found in Table 1, and are based on
recommendations from the telecommunication industry. The
values are much lower than the values in the SCTP RFC [19],
in order to provide the timeliness required in signaling envi-
ronments. To further support timely delivery, signaling envi-
ronments are often designed to have low end-to-end delays,
along with dedicated bandwidth for signaling traffic. In the
evaluation we have used delay and also bandwidth character-
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Figure 1. Experimental environment

istics that are relevant to such environments. These parame-
ters are listed in Table 1 as well.

As noted earlier, signaling traffic is different from ordinary
TCP bulk traffic, presumably bursty in the case of SS7 sig-
naling [3][17]. Therefore, a variety of bursty traffic patterns
were used in the evaluation. The following patterns were con-
sidered: (i) static sized bursts with static inter-burst gaps; (ii)
static sized bursts with exponentially distributed inter-burst
gaps; and (iii) random sized bursts with static inter-burst gaps.
For traffic pattern (i), two different burst sizes and inter-burst
gaps were used. These are listed in Table 1. For pattern (ii)
the same values were used, but for this pattern, the inter-burst
gaps served as mean values in an exponential distribution.
Traffic pattern (iii) was also created using these values, but
for this pattern the different burst sizes were used as mean
values in discrete uniform distributions. For both of these
mean values (n), the ranges of the uniform distributions were
[n—3,n+3].

Let us now consider how the experiments were conducted.
The environment used for the evaluation consisted of three or-
dinary hosts that acted as sender, receiver, and network emu-
lator. The sender and receiver were instructed to communicate
via the network emulator, which delayed and dropped incom-
ing packets as instructed. The entire environment is shown in
Figure 1. Since we evaluated the loss recovery performance
of a standard SCTP implementation and an Early Retransmit
extended SCTP version, packet loss played a central role. To
achieve precise control over packet loss the network emula-
tor was equipped with an extended version of the Dummynet
network emulation software [14]. The extended version [7]
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allows precise control over packet loss with the possibility to
specify these on a per packet basis, using precomputed pat-
terns.

Using this environment, the experiments were conducted
as follows. The receiver initiated an association with the
sender, which responded by transmitting a fixed number of
bursts according to one of the previously mentioned traffic
patterns. When this traffic then passed through the network
emulator, a single packet from the flow was dropped by the
emulator. The time needed for the lost packet to be received
by the receiver was then measured. Using this method, the
whole procedure was repeated” until packets in all the dif-
ferent positions of the flow had been subjected to loss. The
metric used to evaluate Early Retransmit was the message
transfer time (MTT). We define MTT as the time required for
a message to travel from the sender to the receiver applica-
tion. When a message was lost within the emulated network,
the time needed for loss detection and retransmission was, of
course, included in the MTT.

For the static traffic pattern (i), three replications of each
experiment were made and the median value is reported. As
both the bursts and the inter-burst gaps were static, three repli-
cations were enough to eliminate possible random outliers.
For the patterns including randomness, (ii) and (iii), more
replication were of course needed to provide statistical valid-
ity. For these traffic patterns, we conducted 40 replications of
each experiment and reported the mean values together with
the 95% confidence intervals.

4. RESULTS

In the following three subsections, the results for the dif-
ferent traffic scenarios are provided.

4.1. Static Burst Sizes & Static Inter-burst
Gaps

In Figure 2, a representative example of the results for
static burst sizes and static inter-burst gaps is shown. The y-
axis shows the MTT of individual SCTP messages. That is,
how long did it take for a message to travel from the sender
to the receiver application. The x-axis shows the transaction
sequence number (TSN) of the corresponding message. For
the experiments shown in this graph ten bursts, each contain-
ing four messages, were measured®. For these experiments,
the bottleneck bandwidth was 2000 Kbit/s, the delay 15 ms,
and the time between each burst 200 ms.

In the graph we can see three different data sets. The first
set, labeled “No Loss”, shows the MTT of the individual mes-

2Including association establishment, transmission of new packets, and
association termination.

3 Actually 12 bursts were transmitted but the first two bursts were omitted
to avoid interactions with the association initiation. The same procedure was
used for all experiments described in this paper.
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Figure 2. MTT of individual messages, using bursts of four
messages and 200 ms inter-burst gaps

sages, when no packet loss occurred. The reason to why the
MTT increased linearly within the bursts is the queuing that
occurred at the bottleneck. When messages were lost within
the emulated network we can see large differences in their
MTT, depending on which SCTP version that was used. For
the unmodified SCTP implementation, labeled “Standard”,
we can see that the time required to transfer a message was in
the range 110 — 200 ms. The Early Retransmit version only
required about 60 ms, with an exception for the last message
in each burst that, similar to standard SCTP, required about
200 ms.

The largest performance improvement can be found when
the message with TSN 12 was lost. The MTT reduction, pro-
vided by Early Retransmit, for a loss of this message was
approximately 64%. Averaged over all loss positions in this
scenario, Early Retransmit was able to reduce the MTT with
41%. The reason to the performance enhancement, given by
Early Retransmit, is simply that the dynamic reduction of the
duplicate acknowledgment threshold permits fast retransmit
of lost packets, which the standard SCTP version is unable to
offer*.

In addition to this, the results also reveal a performance
problem associated with the management of the retransmis-
sion timer. As can be seen in Figure 2, for the standard SCTP
implementation there were rather large variations in the MTT
within the bursts. For example, the first message in each burst
required about 110 ms, and the fourth about 200 ms. The
reason for this difference is that the retransmission timer is
restarted each time an acknowledgment, which cumulatively

4The SCTP implementation included in version 2.6.15 of the Linux ker-
nel uses a duplicate acknowledgment threshold of four, in accordance with
the SCTP specification [19]. However, in the SCTP errata document [18] the
threshold has been reduced to three. Thus, in later versions of this imple-
mentation, it could be expected that the threshold is reduced, and that fast
retransmit is possible for the first message in each burst.
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Figure 3. Average MTT reduction achieved by Early Re-
transmit, using bursts of four messages, and 200 ms inter-
burst gaps

acknowledges new data, is received (as defined in the SCTP
specification [19]). For example, if the first message in a burst
is lost, the timer will not be restarted, because no acknowl-
edgment will advance the cumulative acknowledgment level.
Thus, the first message will be retransmitted according to the
current value of the retransmission timer. However, if the sec-
ond message is lost, the retransmission timer will be restarted
when the acknowledgment that, cumulatively, acknowledges
the first message arrives. Thus, the timeout will occur one
round-trip time later, even if the value of the timer is the same.
This phenomenon has been observed, and discussed, for TCP
as well [6][10].

Figure 3 summarizes all results achieved when using a
burst size of four messages, and 200 ms inter-burst gaps. The
y-axis of this graph shows the average reduction in MTT, pro-
vided by Early Retransmit. The x-axis of the graph shows
the different end-to-end delays, and the different lines in
the graph represent the different bandwidths evaluated. The
largest performance improvement can be found when the bot-
tleneck bandwidth was high (2000 Kbit/s) and the one way
end-to-end delay was low (5 ms). For this combination, Early
Retransmit reduced the MTT with approximately 53%, av-
eraged over all loss positions. For the combination of low
bandwidth (500 Kbit/s), and high delay (25 ms), the average
performance gain was less, but still significant. Here, Early
Retransmit was able to reduce the MTT with 31%. This dif-
ference is heavily dependent on the minimum allowed value
of the retransmission timer. As the end-to-end delays were
relatively small, and stable, in all the experiments conducted,
the RTO calculation at the sender resulted in RTOpi, (100
ms) all the time. Thus, regardless of bottleneck bandwidth
and end-to-end delay, loss detection by retransmission time-
out required the same amount of time. Early Retransmit, how-
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ever, is not limited by any other factor than the total network
delay. Thus, as long as the bandwidth was increased, and the
end-to-end delay was reduced, Early Retransmit detected loss
quicker.

In Figure 4 another example of the results is shown. Like
in the previous results, the bottleneck bandwidth was 2000
Kbit/s and the delay 15 ms. However, for these experiments,
the size of the bursts was somewhat larger, seven messages,
and the inter-burst gaps shorter, 100 ms. From this graph we
can see that the performance enhancement given by Early Re-
transmit was significant. The largest improvement, provided
by Early Retransmit, can be found when the message with
TSN 84 was lost. The MTT reduction for this message was
60%. Averaged over all loss positions for this scenario, the
MTT reduction was 34%. However, the main reason for the
performance gain was not the same. In the previous results,
the performance difference was due to the fact that the stan-
dard version of SCTP was not able to trigger fast retransmit
at all, and thus needed to rely on retransmission timeouts. In
this case, however, the standard version also allowed fast re-
transmit for all losses. For the first three messages in each
burst this is clearly visible, as their MTTs are comparable to
those of Early Retransmit. For the last four messages in each
burst this is not so obvious, as the Early Retransmit version
outperformed the standard version. The performance differ-
ence depends on the number of duplicate acknowledgments
that are needed for fast retransmit, and the length of the inter-
burst gaps. As the standard version requires four duplicate
acknowledgments, only the first three messages in each burst
can be fast retransmitted immediately. The last four can not
be retransmitted until duplicate acknowledgments generated
by the next burst arrives. The reason why fast retransmit was
invoked for a loss of these messages, instead of retransmis-
sion due to timeout, is simply that the time needed for the
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retransmission timer to expire was longer than the inter-burst
gaps. The Early Retransmit version, however, does not have
to wait for duplicate acknowledgments generated by the next
burst, as it dynamically lowers its threshold when the amount
of outstanding data gets below four packets.

Figure 5 summarizes all results achieved when using a
burst size of seven messages, and 100 ms inter-burst gaps.
The y-axis of the graph shows the average reduction in MTT,
when using Early Retransmit. Further, the x-axis shows the
different end-to-end delays used, and the different lines repre-
sent different bandwidths evaluated. The largest performance
improvement can be found when the bottleneck bandwidth
was high (2000 Kbit/s) and the one way end-to-end delay was
low (5 ms). For this combination, Early Retransmit was able
to reduce the MTT with approximately 47%. For the com-
bination of low bandwidth (500 Kbit/s), and high delay (25
ms), the average performance gain was less significant. Here,
the average MTT reduction, provided by Early Retransmit,
was 16%. The reason for this difference is similar to that
of the previously mentioned results, those with smaller burst
size. However, for these experiments (with larger bursts) the
loss detection of the standard version was not limited by the
RTOmin value. Instead, the time needed for loss detection was
affected by the inter-burst gaps, which limited how fast the
duplicate acknowledgments could return from the receiver.

Furthermore, by having a larger number of messages in
each burst, together with smaller inter-burst gaps, the perfor-
mance benefit of using Early Retransmit was generally de-
creased. The reason for this is simply that the standard ver-
sion of SCTP permitted fast retransmit of all lost messages,
and that it could perform it equally fast for the three first mes-
sages in each burst. The performance benefit that Early Re-
transmit gave for these experiments was instead due to the
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smaller amount of duplicate acknowledgments required for
loss detection of messages at the end of bursts.

To summarize the results for the experiments with static
burst sizes and static inter-burst gaps, we can conclude that
Early Retransmit is able to provide significant improvements
in timely loss recovery. As could be expected, the benefit of
using Early Retransmit was largest when small bursts, sepa-
rated by long inter-burst gaps, were transmitted.

4.2. Static Burst Sizes & Random Inter-burst
Gaps

In Figure 6, an example of the results for static burst sizes
and random inter-burst gaps is shown. The y-axis shows the
MTT of individual SCTP messages, and the x-axis shows
the TSN of the corresponding message. For the experiments
shown in this graph ten bursts, each containing four messages,
were measured. Furthermore, the bottleneck bandwidth was
2000 Kbit/s, the delay 15 ms, and the time between the bursts
exponentially distributed with a mean of 200 ms. As could
be expected, it is now much harder to identify different bursts
by a general pattern in the MTT. However, it is clearly vis-
ible that Early Retransmit offers a general performance en-
hancement. The largest improvement can be found when the
message with TSN 48 was lost. For a loss of this message,
Early Retransmit reduced the MTT with 64%. The average
reduction in MTT for this particular scenario was 59.5%.

Figure 7 contains the average MTT reduction that Early
Retransmit provided, when 40 replications were made for
each loss position. In this graph we can see the average re-
duction in MTT for all combinations of bottleneck bandwidth
and end-to-end delay, when the burst size was four messages
and the inter-burst gaps were exponentially distributed with a
mean of 200 ms. Further, this graph also provides 95% confi-
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transmit, using bursts of four messages, and exponentially

distributed inter-burst gaps with mean 200 ms
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Figure 8. Average MTT reduction achieved by Early Re-

transmit, using bursts of seven messages, and exponentially

distributed inter-burst gaps with mean 100 ms
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dence intervals for the different combinations. As can be seen
in the graph, the benefit of using Early Retransmit instead of
the standard SCTP loss recovery was significant, and very sta-
ble. In fact, the confidence intervals for the experiments with
a bandwidth greater or equal to 1000 Kbit/s are barely visible.
Consistent with previous results, the highest performance im-
provement was achieved when the end-to-end delay was low,
and the bandwidth high. The overall improvement is still large
for all combinations evaluated. If we compare these results
with the results obtained for the static counterpart, shown in
Figure 3, we can see that the performance improvement is
almost the same. For these experiments, the MTT reduction
was between 53% and 28 %, and in the static scenario between
53% and 31%.

For the scenario with larger bursts and shorter inter-burst
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gaps, shown in Figure 8, the performance improvement was
slightly less. This was expected, and consistent with the re-
sults for the static experiments shown in Figure 4, as fast re-
transmit was invoked more often by the standard SCTP im-
plementation. However, the improvement provided by Early
Retransmit for these experiments was significantly lower than
for the static experiments. Especially for a bandwidth of 500
Kbit/s, which had an almost constant MTT reduction of less
than 10%. The reason to why these results differ so much
from the static experiments can be explained by considering
the properties of exponential distributions. Consider an ex-
ponential distribution with rate parameter A. Using the cu-
mulative distribution function of exponential distributions,
shown in Equation 1, it can be concluded that a majority of
all random variables drawn from this distribution will be less
than the mean (1/A). This because F(1/A;A) =1 —e M1/* =
0.632... =~ 0.63. Thus, approximately 63% of all random
variables X ~ Exponential (A) will resultin a X < 1/A.

l—e ™
0

if x >0,

1
ifx <O0. )

F(x;?»):{

Therefore, a majority of all inter-burst gaps was shorter
than the mean value, which already was low for these exper-
iments, causing some parts of the traffic to be almost contin-
uous. Thus, the improvement given by Early Retransmit was
less significant, as there in many cases were enough packets
in flight for the standard SCTP implementation to invoke fast
retransmit as well. In addition, the few long gaps that were
generated by the exponential distribution did not affect the
performance improvement of Early Retransmit so much ei-
ther. The reason for this is that the performance enhancement
provided by Early Retransmit is not proportional to the length
of the inter-burst gaps. That is, if a packet loss occurs and the
gap is long enough to cause a retransmission timeout, then
the actual length of the gap will not affect loss recovery time
in any way.

4.3. Random Burst Sizes & Static Inter-burst
Gaps

In Figure 9, an example of the results for random burst
sizes with static inter-burst gaps is shown. The size of each
burst was drawn from a discrete uniform distribution with
range [1,7], and the inter-burst gaps were all 200 ms. Like
in all previous examples, the bottleneck bandwidth was 2000
Kbit/s and the end-to-end delay 15 ms. Consistent with the
previous results, it is easy to see that Early Retransmit pro-
vided considerable performance enhancements in timely loss
recovery. For this particular loss scenario the MTT was re-
duced with as much as 67%, when the message with TSN
49 was lost. Averaged over all loss positions in this scenario,
Early Retransmit was able to reduce the MTT with 36%.
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Figure 9. MTT of individual messages, using uniformly dis-

tributed burst with a mean of four, and 200 ms inter-burst gaps

Figure 10 shows the average MTT reduction for all combi-
nations of bandwidth and end-to-end delay. This graph shows
an average of 40 replications, for every combination of band-
width, end-to-end delay and loss position, together with 95%
confidence intervals. As can be seen in the graph, Early Re-
transmit provided significant reductions in average MTT, for
all combinations of bandwidth and end-to-end delay. Com-
pared to the static counterpart, shown in Figure 3, we can
see that the average reduction in MTT was somewhat smaller,
ranging from 29% to 46%. The large confidence intervals in-
dicate that the MTT reduction was highly variable. The large
variations are however natural, as the possible range of burst
sizes lies in a region where the benefit of Early Retransmit
varies considerably. For instance, if bursts are of size one nei-
ther Early Retransmit nor the standard implementation can
invoke fast retransmit. Thus, Early Retransmit will not im-
prove the loss recovery performance. If bursts are larger, then
it may be possible for both Early Retransmit and the stan-
dard implementation to trigger fast retransmit, depending on
which packets that are lost and how large the bursts are.

The results from the experiments with burst sizes drawn
from a discrete uniform distribution with range [4,10], and
static inter-burst gaps of 100 ms, are shown in Figure 11. This
graph shows the average reduction in MTT of 40 replications
for every loss position, with 95% confidence intervals. The
average improvement in timely loss recovery is very simi-
lar to the static scenario, shown in Figure 5. The reason why
these results are more similar to the static scenario, compared
to the previously mentioned results, is that the range of pos-
sible burst sizes lies in a range where the benefit of Early
Retransmit is less variable. This also makes the results less
prone to variations, as indicated by the relatively small confi-
dence intervals.
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and 200 ms inter-burst gaps

S.  CONCLUSIONS

This paper studies the SCTP loss recovery mechanisms,
and their inefficiency, when the amount of outstanding data
is small. By comparing some proposals that try to enhance
the SCTP loss recovery in such situations, we conclude that
the Early Retransmit mechanism is the most appropriate for
signaling traffic.

However, as Early Retransmit was designed for both TCP
and SCTP, the original specification is not adapted appropri-
ately to non-bulk traffic, such as signaling traffic. Therefore,
we propose a non-bulk adaptation to Early Retransmit, which
we also evaluate in a signaling context.

Using an emulated network environment, we show that
Early Retransmit is able to reduce the time needed for loss
recovery, in a standard SCTP implementation (lksctp), sig-
nificantly. In some cases the time needed for transmission,
and retransmission, of lost packets was reduced with as much
as 67%. The results show that the largest performance im-
provements, provided by Early Retransmit, can be achieved
when small bursts of packets, separated by long idle peri-
ods, are transmitted. When transmitting traffic that consists
of larger bursts, and shorter idle periods, the performance im-
provement is less but still significant.

The results also show that the management of the SCTP
retransmission timer, alone, can cause loss recovery time to
almost double in some situations. For future work we intend
to evaluate the impact of this phenomenon more closely.
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